Pechini synthesis of lanthanide (Eu3+/Tb3+or Dy3+) ions activated BaGd2O4 nanostructured phosphors: an approach for tunable emissions.
نویسندگان
چکیده
Trivalent lanthanide (Eu(3+), Tb(3+) and Dy(3+)) ions activated tunable color emitting BaGd2O4 (BG) phosphors were synthesized by a facile Pechini-type sol-gel process. The X-ray diffraction pattern confirmed the orthorhombic phase after annealing at 1300 °C for 5 h. Morphological studies were performed based on the analysis of transmission electron microscopy images, which showed needle type nanorods. The BG phosphor exhibited good photoluminescence (PL) properties in the respective regions when doped with Eu(3+), Tb(3+) and Dy(3+) ions. The Eu(3+) co-activated BG:Tb(3+) phosphor yielded tunable emissions including tri-band established white light emission based on the co-activator concentration and excitation wavelength. The energy transfer from Tb(3+) to Eu(3+) ions was controlled by selecting a suitable excitation wavelength and the decay measurements were carried out for analyzing the energy transfer efficiency. The cathodoluminescence properties of these phosphors were almost similar to PL properties when doped with individual Eu(3+), Tb(3+), and Dy(3+) ions, but were different when co-doped with Eu(3+)/Tb(3+) or Eu(3+)/Dy(3+) ions. In the case of Eu(3+)/Tb(3+) doped samples, the energy transfer process occurred unlike the PL channel. The calculated Commission International de l'Eclairage chromaticity coordinates of individual ion doped BG phosphors confirmed red, green, and white emissions and for co-doped samples they showed tunable emission.
منابع مشابه
Trivalent lanthanide metal ions promote formation of stacking G-quartets.
We report the first examples of stacking G-quartet formation assisted by trivalent lanthanide metal ions (La3+, Eu3+, Tb3+, Dy3+, Tm3+).
متن کاملTunable Luminescence in Sr2MgSi2O7:Tb3+, Eu3+Phosphors Based on Energy Transfer
A series of Tb3+, Eu3+-doped Sr2MgSi2O7 (SMSO) phosphors were synthesized by high temperature solid-state reaction. X-ray diffraction (XRD) patterns, Rietveld refinement, photoluminescence spectra (PL), and luminescence decay curves were utilized to characterize each sample's properties. Intense green emission due to Tb3+ 5D4→7F5 transition was observed in the Tb3+ single-doped SMSO sample, and...
متن کاملCross-relaxation induced tunable emissions from the Tm(3+)/Er(3+)/Eu(3+) ions activated BaGd2O4 nanoneedles.
Tm(3+), Er(3+), Tm(3+)/Er(3+), Tm(3+)/Er(3+)/Eu(3+) single, double and triple activator ion/ions doped nanocrystalline BaGd2O4 (BG) phosphors were prepared by a Pechini type sol-gel process. After annealing at 1300 °C, X-ray diffraction patterns confirmed their orthorhombic structure. Field-emission transmission electron microscope images of the BG sample indicated a nanoneedle-type morphology....
متن کاملSynthesis and luminescent properties of uniform monodisperse LuPO4:Eu3+/Tb3+ hollow microspheres
Uniform monodisperse LuPO4:Eu3+/Tb3+ hollow microspheres with diameters of about 2.4 µm have been successfully synthesized by the combination of a facile homogeneous precipitation approach, an ion-exchange process and a calcination process. The possible formation mechanism for the hollow microspheres was presented. Furthermore, the luminescence properties revealed that the LuPO4:Eu3+ and LuPO4:...
متن کاملEnabling Photon Upconversion and Precise Control of Donor–Acceptor Interaction through Interfacial Energy Transfer
Upconverting materials have achieved great progress in recent years, however, it remains challenging for the mechanistic research on new upconversion strategy of lanthanides. Here, a novel and efficient strategy to realize photon upconversion from more lanthanides and fine control of lanthanide donor-acceptor interactions through using the interfacial energy transfer (IET) is reported. Unlike c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 34 شماره
صفحات -
تاریخ انتشار 2014